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Rotella MF, Nisky I, Koehler M, Rinderknecht MD, Bastian
AJ, Okamura AM. Learning and generalization in an isometric
visuomotor task. J Neurophysiol 113: 1873–1884, 2015. First pub-
lished December 17, 2014; doi:10.1152/jn.00255.2014.—Adaptation
is a prominent feature of the human motor system and has been
studied extensively in reaching movements. This study characterizes
adaptation and generalization during isometric reaching in which the
arm remains stationary and the participant controls a virtual cursor via
force applied by the hand. We measured how learning of a visual
cursor rotation generalizes across workspace 1) to determine the
coordinate system that predominates visual rotation learning, and 2) to
ascertain whether mapping type, namely position or velocity control,
influences transfer. Participants performed virtual reaches to one of
two orthogonal training targets with the applied rotation. In a new
workspace, participants reached to a single target, similar to the
training target in either hand or joint space. Furthermore, a control
experiment measured within-workspace generalization to an orthog-
onal target. Across position and velocity mappings, learning trans-
ferred predominantly in intrinsic (joint) space, although the transfer
was incomplete. The velocity mapping resulted in significantly larger
aftereffects and broader within-workspace generalization than the
position mapping, potentially due to slower peak speeds, longer trial
times, greater target overshoot, or other factors. Although we cannot
rule out a mixed reference frame in our task, the predominance of
intrinsic coding of cursor kinematics in the isometric environment
opposes the extrinsic coding of arm kinematics in real reaching but
matches the intrinsic coding of dynamics found in prior work. These
findings have implications for the design of isometric control systems
in human-machine interaction or in rehabilitation when coordinated
multi-degree-of-freedom movement is difficult to achieve.

isometric reaching; force control; visuomotor rotation; kinematic
adaptation; workspace generalization

TO PERFORM GOAL-ORIENTED REACHING, the motor system plans a
movement and uses internal models to calculate the motor
commands and predict the sensory outcomes (Kawato 1999;
Wolpert and Flanagan 2009). In isometric reaching, force or
torque produced by a static hand is mapped to the movement of
a cursor. The actual dynamics of the arm are removed, and arm
motion is replaced by the programmable dynamics of a virtual
cursor on a screen. Isometric control is a compelling alternative
to movement input for human-machine interaction because it
uses a smaller workspace and is associated with an unlimited
potential set of virtual dynamics. A particular application of
interest is rehabilitation in which isometric control has been

used to evaluate motor impairment (Casadio et al. 2004;
Dewald et al. 2001) and to treat movement deficits (Ellis et al.
2005). However, during isometric reaching, proprioceptive
feedback of the arm is greatly reduced, and the required muscle
activity differs from that used for movement (Sergio et al.
2005).

In real movement, discrepancies between the desired and
actual state of the arm, estimated from visual and/or proprio-
ceptive feedback, drive adaptation of an internal model (Sabes
2000; Shadmehr and Mussa-Ivaldi 1994). Adaptation of the
motor system to changes in arm dynamics and kinematics has
been extensively studied in real reaching. Typically, arm dy-
namics have been perturbed by applying a mechanical force
field (Shadmehr and Mussa-Ivaldi 1994) or inertial mass (Sain-
burg et al. 1999) on the hand, whereas arm kinematics have
been altered by rotating or scaling a visual cursor representing
the hand (Krakauer et al. 2000; Pine et al. 1996). The coordi-
nate frame in which the internal model encodes kinematic
and/or dynamic information has been debated.

Commonly, the intrinsic coordinate frame relates to the
muscles or joints, whereas the extrinsic frame corresponds to
hand-, eye-, or task-centered space. Generalization, or the
transfer of motor learning from a practiced to an unpracticed
movement, has been used to distinguish between these coor-
dinate frames. In a typical experimental paradigm, a perturba-
tion is learned in one workspace (or arm configuration), and
transfer of this learning to a new workspace, compatible in
selected coordinates, is tested. Studies employing generaliza-
tion and other methods have found evidence that arm dynamics
are largely represented in the intrinsic frame (Gandolfo et al.
1996; Malfait et al. 2002; Orban de Xivry et al. 2011; Sainburg
et al. 1999; Shadmehr and Moussavi 2000; Shadmehr and
Mussa-Ivaldi 1994) such that the internal model maps the
desired motion directly to the required muscle activations. In
comparison, arm kinematics are largely coded in extrinsic
coordinates (Flanagan and Rao 1995; Krakauer et al. 2000;
Vetter et al. 1999; Wolpert et al. 1995).

Taken together, these studies suggest that dynamic and
kinematic internal models are learned in different coordinate
frames and thus adapt independently (Flanagan et al. 1999;
Krakauer et al. 1999). However, more recent evidence suggests
that the coordinate frame for each internal model may be
mixed. For example, arm dynamics were learned in both
intrinsic and extrinsic frames in autistic children (Haswell et al.
2009) and when visual feedback was aligned with the plane of
the arm (Parmar et al. 2011). Arm dynamics were also coded
in a combination of intrinsic, extrinsic, and object-based coor-
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dinates that was influenced by local learning effects in a study
by Berniker et al. (2014). Moreover, visuomotor rotation learn-
ing was dependent on intrinsic arm posture (Baraduc and
Wolpert 2002) and was coded in a multiplicative, intrinsic-
extrinsic gain field when generalization was tested across many
combinations of target direction and workspace (Brayanov et
al. 2012).

Isometric adaptation to a visuomotor rotation has also been
studied. Researchers have investigated the roles of visual
feedback (Hinder et al. 2008a), synergistic muscle activity (de
Rugy et al. 2009; de Rugy 2010; de Rugy and Carroll 2010;
Gentner et al. 2013; Shemmell et al. 2005), and spatial/sensory
cues (Hinder et al. 2008b; Woolley et al. 2007, 2008, 2011) in
adaptation to a single cursor rotation or set of opposing
rotations. However, there is a lack of consensus on the coor-
dinate frame in which a visual perturbation is learned. If
isometric learning is similar to movement, we would expect
cursor kinematics also to be coded in extrinsic space. We
previously found that similarity exists in the time course and
extent of adaptation in isometric and movement conditions
(Rotella et al. 2013), and Hinder et al. (2007) found that the
retention and interference of isometric learning paralleled those
in movement studies. Furthermore, target separation in visual
(extrinsic) space was found to be a required factor for isometric
dual adaptation (Woolley et al. 2011). However, muscle syn-
ergies, which may involve either extrinsic or intrinsic coordi-
nates, have been found to have a major contribution in isomet-
ric learning. When participants adapt to a visuomotor rotation
or a perturbed muscle-to-force mapping, it was found that
modifying the activation of an existing muscle synergy (vs.
recruiting new muscles) led to faster and more efficient adap-
tation (Berger et al. 2013; de Rugy et al. 2009) and broader
generalization (de Rugy 2010). The fact that these adaptation
effects did not transfer across joints led de Rugy et al. (2009)
to suggest that muscle-based coordinates play a part in some
portion of the adaptation. Together, the evidence related to
isometric adaptation supports a mixed-coordinate reference
frame in which both extrinsic and intrinsic representations
contribute to the total adaptation process. Moreover, evidence
of a mixed-coordinate representation has been found during
interlimb transfer of visuomotor learning in a finger-based
isometric task (Carroll et al. 2014).

In this work, we investigate the nature of isometric adapta-
tion and generalization in a horizontal plane during a virtual
reaching task. The primary objective was to determine the
coordinate frame that is predominant in learning a visuomotor
rotation in an isometric environment. Whereas previous work
on isometric reaching has primarily implemented joint-based
cursor control in which isometric torque produced at the elbow,
forearm, or wrist controlled the movement of a cursor along
intrinsic axes, we use Cartesian-space control. Our experiment
sampled two workspaces in the reachable area of the arm and
used between-workspace generalization to distinguish between
intrinsic (joint space) and extrinsic (hand space) frames. The
secondary goal was to determine whether the type of isometric
mapping, either position or velocity control, significantly in-
fluences adaptation and the extent of generalization. To iden-
tify the contribution of the change in pose, we also added a
control condition in which we tested generalization to an
orthogonal target in a single workspace.

MATERIALS AND METHODS

Participants performed an isometric reaching task requiring the
movement of a cursor on a screen to one of two circular targets at a
10-cm distance. Using only the right arm, reaches were made by
applying force to the locked handle of a robotic manipulandum with
both position and velocity control mappings. We investigated two
workspaces of the arm (denominated left and right) that were sepa-
rated by a 90° shoulder rotation. As depicted in Figs. 1 and 2, the left
configuration (L) corresponded to the upper arm at �90° relative to
the frontal plane, and the elbow at �90° relative to the upper arm. The
right configuration (R) required the upper arm to be aligned with the
frontal plane and the elbow at 90° flexion. We explored the transfer of
visuomotor rotation learning under the two isometric control map-
pings and three combinations of workspace and target direction.

Participants

Forty-eight healthy, right-handed individuals (31 men and 17
women) participated in the study. Participants were 28 � 6.9 (mean �
SD) yr old over a range of 18–58 yr. The study was approved by the
Stanford University Institutional Review Board, and all participants
provided informed, written consent before participation.

Experimental Setup

The experimental setup is depicted in Fig. 1. A 2-degree-of-
freedom planar manipulandum, described in a previous study (Rotella
et al. 2013), was used as a force-input device for this study. The links
of the robot were mechanically locked, fixing the handle in a static
location. The participant’s hand grasped a freely rotating rubber
handle with an embedded ATI Mini45 force-torque sensor, allowing
measurement of planar force at the hand in x- and y-directions. Force
on each axis was sampled at 1 kHz, filtered using a second-order,
discrete Butterworth filter with 6-Hz cutoff frequency, and mapped to
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E

B

Fig. 1. Participants interact with the experiment workstation while seated in a
mobile transport chair (A) with adjustable shoulder straps. Force applied by the
participant on the handle (B) of the stationary manipulandum (C) is measured
by a force-torque sensor and is used to control a cursor displayed via a
mirror-projection system (D). The weight of the arm is supported (E), and
participants don noise-isolating headphones to facilitate focus on the task (F).
Here, the arm of the participant is in the left workspace.
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the movement of a cursor displayed on a screen. The force-sensing
resolution was 0.125 N, and unfiltered forces of magnitude �0.2 N
were neglected to prevent unwanted cursor behavior (resulting from
drift and noise in the force sensor) at the start of movement.

Participants were seated in a lockable transport chair with shoulder
straps that immobilized the torso. The seated height of the participant
was adjusted using seat cushions. The arm of the participant was
positioned in plane with the shoulder, and the forearm was fastened to
a support with adjustable Velcro straps. Participants wore noise-
isolating headphones to improve overall comfort and reduce distrac-
tion while performing the task.

A mirror-projection system provided a visual display to the partic-
ipant. Graphics were projected from a 24-in. monitor onto a horizontal
mirror positioned above the arm. The mirror height was approxi-
mately halfway between the arm and monitor, providing visual col-
location of the arm and the cursor movement planes. The arm and
hand remained occluded from the participant throughout the experi-
ment.

Force calibration and control mappings. For both position- and
velocity-based isometric cursor mappings, gains were selected to

transform planar input force, f�in � �fxin
,fyin

�T, to cursor movement. A

force calibration task was used for each participant to scale control
gains based on individual ability. Force targets, displayed as wedges
on the screen, visually guided participants to apply force in four
directions (toward, away, left, right) within an acceptable 20- to 45-N
range. Participants were instructed to apply a “force that would be
comfortable to hold for 10 s,” targeting the midrange of their ability.
In each direction, force was applied for 3 s, and a maximum force was
calculated as the average of the highest 10 force measurements. The
smallest maximal force for all 4 directions was taken as the calibration
force, fcal.

The calibration force was used as a scaling factor in each type of
isometric mapping. For the position mapping, the input force was
directly scaled to the position of the cursor, x�cursor � �x,y�T, via the
position gain, kp.

x�cursor � kpf�in

The kp gain was computed as kp � cp/fcal, with the control constant
cp � 0.24 m. The value of cp was selected based on our previous
investigation (Rotella et al. 2013) with slight modification to improve
cursor responsiveness and speed. Similarly for the velocity mapping,

input force scaled to the velocity of the cursor, ẋ�cursor � �ẋ,ẏ�T, by
gain kv.

ẋ�cursor � kvf�in

The rate gain, kv, was calculated as kv � cv/fcal, with the control
constant cv � 1.5 m/s. The values of the control constants cp and cv

were chosen empirically based on our previous investigation (Rotella
et al. 2013), with slight modification to improve cursor responsive-
ness, and speed-responsive enough to avoid excessive fatigue but slow
enough such that performance of the reach task is feasible.

Experimental Protocol

Six groups of participants (n � 8 per group, 48 total) were recruited
for this experiment, and the groups were randomly assigned: half of
the groups performed the experiment with the position mapping,
whereas the other half used the velocity mapping. Within each
mapping, three groups were tested: the hand-space and joint-space
groups tested the effects of arm configuration and target direction on
learning transfer, and a control group tested generalization to an
orthogonal target within a single workspace. Groups are described by
two letters, the first indicating the type of mapping (position, P; or
velocity, V) and the second indicating the space (hand, H; joint, J; or
control, C).

Participants made virtual reaches to 2 targets. Target 1 was 45°
counterclockwise (CCW) from the rightward-lateral 0° direction, and
target 2 was 135° CCW from 0°. These target directions are similar to
those used by Malfait et al. (2002) and are close to orthogonal in both
hand and joint space. Participant groups performed 40 baseline (BL)
reaches to the training target, 40 BL reaches to the transfer target, 120
training (TRN) reaches with a 45° CCW cursor rotation, and 40
transfer (TFR) reaches with the rotation removed. Breaks were pro-
vided after every block of 40 trials, but no minimum break time was
enforced. Rest periods were on the order of seconds to minutes with
typically greater time elapsed when participants were physically
repositioned to a new workspace. To change between L and R
workspaces between blocks of trials, participants were physically
repositioned relative to the stationary handle of the manipulandum.

The experimental protocol is summarized in Fig. 2, in which target
labels indicate the corresponding workspace (L or R) and group (H, J,
or C). For all groups, transfer reaches were made to target 1 with the
arm in the left or right workspace. Groups PH and VH performed the
first BL and training blocks with the arm in the left workspace to
target 1LH. Subscript H indicates that the training target was similar to
the transfer target in hand space (located at the same position on the
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40 x 1Left 40 x 1
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Joint space 
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Fig. 2. Experiment design and participant groups. All participants performed 2
sets of 40 baseline trials, 3 sets of 40 training trials in which the displayed
cursor was rotated 45° counterclockwise, and 1 set of 40 transfer trials in which
the cursor rotation was removed. Participants made center-out reaches to target
1 or 2 located at 45° and 135° from horizontal, respectively. Targets are further
labeled by subscript L or R, indicating left or right workspace of the arm, and
by subscript H, J, or C, indicating the target is similar to the transfer target in
hand space, similar to the transfer target in joint space, or serves as an
orthogonal control to the transfer target. P, position; V, velocity. A: hand-space
groups (PH and VH) performed all reaches to target 1, including baseline trials
in the left and right configurations, training trials in the left configuration, and
transfer trials in the right configuration. B: joint-space groups (PJ and VJ)
repeated the same sequence of arm configurations but performed the 1st
baseline and training segments to target 2. C: the control groups (PC and VC)
performed all trials with the arm in the left configuration, removing the effect
of the posture change. Participants in this group made baseline reaches to
target 2 and target 1, trained to target 2, and tested to target 1, isolating the
effects of generalization to an orthogonal target in a single workspace.
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screen) and was close to orthogonal in joint space. The second BL and
transfer blocks were made with the arm in the right workspace to
target 1R. Groups PJ and VJ performed the first BL and training
blocks with the arm in the left workspace to target 2LJ and the second
BL and transfer blocks in the right workspace to target 1R. Target 2LJ

was similar to the transfer target, 1R, in joint space (positioned
similarly relative to the hand) and was orthogonal in hand space.

The control group followed a similar procedure but maintained the
left arm configuration throughout the experiment. The first BL and
training blocks were made to target 2LC. In the second BL and transfer
blocks, the arm position was maintained, and participants reached to
target 1L. The training target, 2LC, was close to orthogonal to the test
target in both hand space and joint space. Therefore, the control group
was used to determine the extent of generalization to an orthogonal
target in a single workspace for both position and velocity mappings.
In the control group, breaks were provided every 40 trials; a minimum
break time of 90 s was enforced only for breaks corresponding to
workspace changes in the other groups.

For all reaches, participants were instructed to make quick and
accurate center-out movements of the cursor (0.6-cm radius) from the
center of the workspace (circle with 1-cm radius) to a circular target
(1-cm radius) located 10 cm away. To acquire a target successfully,
the cursor had to be inside the target circle and “stopped” (speed �
0.01 m/s) for 0.5 s. Participants were instructed to release the force on
the handle after each trial, and the cursor automatically returned to
center. The velocity components of the cursor were calculated using
numerical differentiation and filtered using a second-order discrete
filter, described by a linear difference equation and cutoff frequency
of 8 Hz. At the end of each trial, participants received feedback on the
maximum speed of the cursor, encouraging between-trial speed cor-
rection. Speed was visually displayed via a speedometer that pre-
sented the target peak speed range (0.4–0.6 m/s) in a green color.
Trials in which the reaching attempt duration exceeded 5 s from when
the cursor center left the center of the workspace were automatically
ended, initiating the start of the next trial. This feature was designed
to reduce participant frustration, and none of the trials was removed
from the analysis based on completion time criteria.

Data Analysis

Cursor position and force data were recorded at 500 Hz. Position
components (x and y) were independently filtered using a second-
order, low-pass Butterworth filter with 6-Hz cutoff frequency applied
in forward and reverse directions. Cursor speed was taken as the
magnitude of the velocity components, found by numerically differ-
entiating the filtered position. For each reaching trial, the onset of
movement was defined by searching backward from the peak speed
and identifying where the speed first dropped below 5% of the
maximum. The corresponding unfiltered cursor position was taken as
the path start. Trials in which a single, targeted reach was not made or
the device became unlocked were invalid and removed from the
analysis.

To assess adaptation, we measured the angular error (in degrees)
between the first cursor position exceeding a 3.5-cm Euclidean dis-
tance from the onset position and the straight-line path from onset to
target. Positive angular error indicated a CCW rotation of the path.
The distance-from-start metric was chosen to address differences
in the timing characteristics (maximum speed and movement dura-
tion) of position- and velocity-based trials, discussed in the following
section. Across all participants, the point at which error was measured
corresponded to the early part of the trajectory, before the expected
effect of feedback. An analysis of the last 20 trials in the 1st BL
segment for each participant revealed that the selected distance cor-
responded to an average of 137 � 31 ms from onset for the position
mapping and 182 � 39 ms for the velocity mapping.

For all participants, the angular error was calculated for each of the
240 trials. The valid errors for each trial were subsequently averaged

across participants within each group, producing an average error
curve per group. The corresponding standard error of the mean (SE)
was calculated for each average error point. A double-exponential
curve (sum of exponential terms plus constant) was fit to the average
errors in the adaptation phase for each group, modeling fast and slow
learning processes. A time constant, �, was calculated to describe the
overall learning rate per group, similar to Lang and Bastian (1999).
However, here the time constant was calculated from a double- (vs.
single-) exponential curve fit to the errors and was taken as the whole
number of trials for the fitted error to drop below 63.2% of the
difference between the initial and final model values. We also used the
fast and slow learning rates of the double-exponential fit to quantify
the time scale of adaptation.

To quantify learning and generalization effects further, we ana-
lyzed single trials including the first/last TRN trials (81 and 200) as
well as the first/last TFR trials (201 and 240). For this single-trial
analysis, we applied a correction to remove the BL bias for each
participant. The bias for each BL was taken as the average of the last
20 BL errors. For each participant, the bias from the 1st BL was
subtracted from the TRN trials, and the bias from the 2nd BL was
subtracted from the TFR trials. To test for complete learning (error
reduced to 0), a 1-sample, 2-tailed t-test was performed on the last
BL-corrected TRN errors in each group. One-sample, two-tailed
t-tests were also performed on first/last BL-corrected TFR errors in
each group to test for a statistically significant aftereffect/complete
washout of learning, respectively. The threshold for statistical signif-
icance for all tests was at � � 0.05, and all statistical tests were
performed using SPSS Statistics (version 20; IBM, Armonk, NY). All
other analysis was performed using MATLAB (version R2010a;
MathWorks, Natick, MA).

A 2-way ANOVA was conducted to test the effects of mapping
type (position or velocity) and space (joint, hand, or control) on the
transfer of visuomotor learning, represented by the 1st BL-corrected
TFR errors. Given the small sample size (n � 8 for each of the 6
groups), the Wilk-Shapiro test was used to evaluate the normality of
errors in each group, and Levene’s test was used to assess the equality
of error variances. For significant, multilevel independent factors,
Tukey post hoc test determined significant comparisons.

To characterize differences in participant performance for position
and velocity control further, we analyzed the trajectory kinematics of
the last 20 reaches of the 1st BL segment, in which all participants
were positioned in the left workspace. We measured temporal aspects
of the trajectories, including peak cursor speed and total trial time,
which was taken as the time between movement onset and trial end
(target acquisition or time out). With respect to spatial characteristics,
we additionally quantified the target overshoot by measuring the
maximum distance of the cursor from the onset position. For each
metric, the trial values were grouped by mapping and averaged, and
means were compared in an independent-samples t-test.

RESULTS

We found that transfer of isometric visuomotor rotation
learning took place in joint space independent of the type of
mapping (position or velocity). Despite the similar learned
coordinate frame across mappings, mapping type influenced
the extent of learning transfer, as larger aftereffects were found
using velocity control. The influence of mapping type on
learning reflects differences in task performance under position
and velocity control.

Participant Force Calibration and Trial Selection

The average calibration force for the 48 participants was
25.51 � 4.54 N (mean � SD). Of the study participants, a
single participant in the PH group achieved a much lower
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calibration force of 11.49 N. Although the position mapping
experienced by this participant may have differed from the
other participants, there was no significant difference in the
results when this participant was included or excluded from
the analysis. Thus no participants were excluded from the
study. Across all virtual reaching trials (240 per participant,
total of 11,520 trials), we identified 73 trials (0.63%) as invalid
and removed them from further analysis.

Time Course and Extent of Adaptation

When we visually rotated the cursor during virtual reaching,
participants adapted to the perturbation to a similar extent and
at a similar rate in all groups. The time course of angular error,
averaged across the eight participants in each group, is shown
in Fig. 3. In all BL segments, the average angular error
typically remained within �10°. The bias errors in the first and
second BL segments, averaged across all participants, were
1.28 � 3.59° and �0.35 � 3.45° (mean � SD), respectively.
At the onset of perturbation (trial 81), the average error peaked
for all groups and reduced over the TRN phase. Participants
completely adapted to the perturbation in all groups (Fig. 4),

given that the BL-corrected errors in the last training trial were
not statistically significantly different from 0° (t7 � 2.045 and
P � 0.080 for VJ and P � 0.114 for all others). This result is
typical of an adaptive process in which the motor system
continually adjusts to reduce error and restore straight cursor
paths. The rate of adaptation, described by �, was rapid and
similar across all groups; the double-exponential curve fit to
the average errors reduced by 63.2% within three or four
isometric reaches.

Despite these group similarities, we found a statistically
significant difference in the amplitude of the first training error
between the position and velocity mappings (Fig. 4). We
expected the initial error at the onset of perturbation to be
�45°, equivalent to the magnitude of the applied visual rota-
tion. Instead, larger initial errors were found for the position
mapping. The first, BL-corrected TRN error averaged across
participants in the position groups (52.15 � 8.17°, mean �
SD) was 8.37° greater than the initial TRN error for partici-
pants in the velocity groups (43.78 � 8.61°). A t-test confirmed
that this difference was statistically significant (t43 � 3.333,
P � 0.002).
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Fig. 3. Angular error averaged by participant quantifies the time course of adaptation in position and velocity control mappings. Errors (black) are plotted before
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Furthermore, we observed some interesting occurrences in
the time course of average errors over the TRN phase. Abrupt
peaks in angular error throughout training often accompanied
the first trial after a break (Fig. 3), indicating a forgetting of the
learned rotation during the break. Additionally, errors in the
first training period of the VH group and the last training period
of the VJ group diverged from the smooth, decreasing learning
curve we expected. These irregular segments may be the result
of large errors of two atypical participants, indicated by large
standard errors about these points. The removal of the data of
these atypical participants from the overall analysis eliminated
these irregularities but did not change the results of our
statistical analysis of initial training and transfer errors. There-
fore, we present the analysis of our entire participant popula-
tion without removing the atypical participants.

Effects of Mapping and Space on Learning Transfer

Generally, transfer of learning was the greatest in joint-space
groups (VJ and PJ), moderate in the other velocity groups (VH
and VC), and absent in the other position groups (PH and PC).
Typical cursor trajectories from the first TFR trial in each
group graphically illustrate these results (Fig. 5). VJ and PJ
trajectories demonstrated the most pronounced aftereffects,

apparent in the large cursor deviation from the straight path.
VH and VC trajectories typically showed less deviation com-
pared with the joint-space trajectories. In contrast, the trajec-
tories for PC and PH groups were nearly a straight path to the
target.

To quantify these effects, we analyzed the first, BL-cor-
rected TFR error for all groups (Fig. 4). A significant transfer
of learning was found in PJ and all velocity groups. Of these
groups, VJ had the largest aftereffect of �21.02°, followed by
PJ with an aftereffect of �13.85°. Compared with the corre-
sponding first BL-corrected TRN error (which would indicate
a 100% transfer), these values represented 45.8 and 26.6%
transfer of learning for VJ and PJ groups, respectively. One-
sample t-tests showed that the aftereffects in both joint-space
groups were statistically significantly different from 0° with
P � 0.001 for both VJ (t7 � �6.828) and PJ (t7 � �6.214).
Whereas the aftereffects were also statistically significant for
VH (�9.41°; t7 � �2.927, P � 0.022) and VC (�8.98°; t7 �
�3.193, P � 0.015) groups, the percentage transfer of learning
was �24% in each group. No statistically significant transfer
was observed in the PH (�4.25°; t7 � �1.282, P � 0.241) and
PC (�3.98°; t7 � �1.276, P � 0.243) groups. Although
joint-space learning was dominant, all groups demonstrated
incomplete generalization in the TFR phase. Aftereffects of
learning in all groups completely washed out over 40 TFR
trials. All BL-corrected errors in the last transfer trial (Fig. 4)
were not statistically significantly different from 0° (t7 �
�1.606, P � 0.152 for VC and P � 0.250 for all other groups),
indicating a return to BL performance and straight cursor
trajectories.

When the effects of isometric mapping (position or velocity)
and training space (hand, joint, or control) were analyzed
together, we found that both factors statistically significantly
influenced learning transfer, with the greatest transfer associ-
ated with the velocity mapping and joint space. Before imple-
menting a two-way ANOVA, results of the Wilk-Shapiro test

Cursor path

Straight path

Target location

PH VH

PJ VJ

VCPC
0.1 m

Fig. 5. Cursor paths for selected 1st transfer trials categorized by group. In
position and velocity mappings, the angular deviation from the straight path is
larger in joint-space groups (PJ and VJ) compared with hand-space (PH and
VH) and control (PC and VC) groups. Generally, the errors associated with the
velocity mapping were greater than those in the position mapping.
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Fig. 4. First and last errors for TRN and TFR segments indicate the extent of
rotation learning and unlearning with error bars indicating SE of the mean. In
all groups, an angular error statistically significantly different from 0° (P �
0.01) was present in the 1st training trial in which the cursor rotation was
introduced. Angular error subsequently reduced to 0 over 120 trials, indicating
complete adaptation in all groups. The aftereffect, measured by the 1st transfer
error, was extremely significant for PJ and VJ groups (P � 0.01) and
significant for VH and VC groups (P � 0.05). All errors are corrected for
baseline bias; for each participant, TRN and TFR errors were corrected using
the average error of the last 20 trials of the 1st and 2nd baseline segments,
respectively.
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and Levene’s test verified that the first BL-corrected TFR
errors were normally distributed (W8 � 0.844, P � 0.082 for
PH and P � 0.149 for all other groups) with equal variance
(F5,42 � 0.214, P � 0.955). We found no statistically signif-
icant interaction between mapping and space factors (F2,42 �
0.082, P � 0.922) and, therefore, independently analyzed the
effect of each. As shown in Fig. 6, there was a significant
difference in learning transfer between position and velocity
mappings (F1,42 � 5.618, P � 0.022) with a greater aftereffect
for the velocity mapping (�13.14 � 10.00°, mean � SD)
compared with the position mapping (�7.36 � 9.20°). Fur-
thermore, the training space significantly influenced learning
transfer (F2,42 � 8.697, P � 0.001). Tukey post hoc test
indicated that the joint-space groups generated greater transfer
compared with both the hand-space (P � 0.003) and control
(P � 0.002) groups. The difference between the joint-space
and control groups indicates that the observed aftereffects in PJ
and VJ can be attributed to the change in workspace and are not
a result of a broad generalization across orthogonal targets.

Comparison of Position and Velocity Mappings

Whereas evidence of a joint-space coordinate learning frame
was found for both the position and velocity mappings, we
observed differences in participant performance under the two
types of cursor control with respect to the required input force
and temporal/spatial cursor characteristics. Figure 7 highlights
these differences and displays the force trajectories, speed
trajectories, and path of an example reach under each mapping.
In the position mapping, the required force magnitude resem-
bled a ramp that plateaus, as a constant force was required to
stabilize the cursor within the target. The corresponding cursor
speed, found by differentiating the path components, was
similar in shape to the bell-shaped velocity profiles associated
with actual reaching movements (Flash and Hogan 1985). In
the velocity mapping, the components of input force were
directly mapped to cursor velocity such that the cursor speed
resembled the force magnitude (scaled by gain kv). Whereas
the position mapping required generally lower forces main-

tained over a longer period, the velocity mapping required
higher force over a short duration.

The sample trajectories illustrate additional observations of
differences in cursor kinematics between the mappings, includ-
ing higher peak speeds, shorter trial times, and less overshoot
at the target in position control. The peak speed averaged
across the selected BL reaches was greater for the position
mapping (0.54 � 0.13 m/s, mean � SD) compared with the
velocity mapping (0.42 � 0.11 m/s), and the difference was
statistically significant (t924 � 15.578, P � 0.001). Likely,
greater cursor speed contributed to a reduced average trial
completion time in the position trials (1.46 � 0.60 s). Velocity
trials lasted 2.01 � 0.84 s and were of statistically significantly
longer duration than position trials in a t-test (t868 � �11.619,
P � 0.001). During target acquisition, velocity trials also
displayed significantly greater overshoot, given a maximum
average distance of 11.89 � 1.79 cm compared with 10.51 �
0.58 cm in the position mapping (t580 � �16.104, P � 0.001).
In the velocity mapping, on average, the cursor exceeded the
10-cm target distance by nearly 2 cm. This finding is not
surprising given that overshoot was not penalized in our task
and was allowed to achieve the primary goal of maintaining the
target cursor speed. Although less overshoot was apparent in
the position mapping, we observed that it required more effort
to stabilize the cursor at the target location.

Although the adaptation rates, expressed in terms of �, were
similar between the position and velocity mappings, there was
evidence that average learning rates may be slightly faster in
position control. An analysis of the coefficients of the double-
exponential curve fit to angular errors revealed a faster rate in
the fast learning process; the corresponding rate coefficient
averaged across position groups was �0.73 � 0.11, compared
with �0.50 � 0.06 for the velocity groups, with t4 � �3.220,
P � 0.032. Despite this difference, the rate of the slow learning
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whereas double asterisks comparisons are significant with P � 0.01. In both
position and velocity mappings, the joint-space group has a significantly
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errors in the velocity mapping are significantly larger than transfer errors in the
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process was not significantly different between mappings (t4 �
�1.117, P � 0.327) with average rate coefficient �0.007 �
0.004 for position and �0.004 � 0.002 for velocity mappings.

DISCUSSION

The aims of the study were to determine 1) which coordi-
nates, intrinsic (joint space) or extrinsic (hand space), are
predominant in the internal representation of visuomotor rota-
tion in isometric reaching, and 2) whether the type of isometric
mapping (position or velocity control) influences the adapta-
tion and generalization processes. By testing the transfer of
learning of a 45° CCW visual perturbation to a new workspace,
we found that joint coordinates are predominant in rotation
learning in an isometric environment. Whereas mapping type
minimally influenced adaptation, the velocity mapping yielded
greater between-workspace transfer and generalized more
widely compared with the position mapping.

Time Course and Extent of Adaptation

All groups completely adapted to the 45° CCW visual cursor
rotation, with 63.2% of learning taking place early in the
training phase (within 3–4 reaches). This rapid learning is
primarily attributed to the required learning of only a single
target direction. When 8 target directions were learned in our
previous isometric study, a comparable amount of learning
required over 20 reaches for both position and velocity map-
pings (Rotella et al. 2013), amounting to a similar number of
trials per target to achieve 63.2% adaptation.1 Generally, this
result is consistent with the finding that, for real reaching, the
rate of visuomotor adaptation to multiple targets is slower than
adaptation to a single target and is comparable if calculated
in terms of trials per target (Krakauer et al. 2000). It is
plausible that in the isometric environment, like in movement,
adaptation to the visual rotation generalizes narrowly across
target direction, and exposure to error in multiple directions is
necessary for complete generalization within a single work-
space. With respect to the extent of learning, we demonstrated
complete adaptation for all isometric groups. Similarly, near-
complete adaptation (81%) was found after 60 dynamic reach
reversals with a 30° CCW cursor rotation (Krakauer et al.
2000). Overall, the time course and extent of motor errors
suggest similarity between visuomotor learning in isometric
and dynamic reaching.

Effects Of Mapping and Space on Learning Transfer

The main finding of this study is that the internal represen-
tation of isometric cursor kinematics was coded predominantly
in intrinsic (joint) coordinates in both position and velocity
mappings. Although we cannot rule out a mixed-coordinate
frame in both mappings, the predominance of the intrinsic
coordinates was clearly demonstrated in the position mapping,
in which significant learning transfer occurred only in PJ. The
nonsignificant aftereffect observed for the PC group supports a
narrow within-workspace generalization function for the posi-

tion mapping in which there is little generalization away from
the learned reaching direction.

A wider within-workspace generalization function was pres-
ent for the velocity mapping; the significant aftereffect in VC
indicates that some learning in the TRN target direction trans-
ferred to the TFR target, positioned 90° away. We hypothesize
that the broader generalization is the result of longer trial times
and greater target overshoot associated with the velocity map-
ping, which may produce more submovements over a broader
range of directions. Motor corrections have also been found to
influence visuomotor generalization in actual reaching, espe-
cially for movement directions far from the training direction
(Taylor et al. 2013). The within-workspace generalization of
both mappings is consistent with the minimal transfer of
rotation learning to an orthogonal target (approximately
�25%) found in dynamic reaching (Krakauer et al. 2000; Pine
et al. 1996).2 Wider generalization for the velocity mapping
may have contributed to the transfer of learning observed in
VH, which was similar in magnitude to that in VC.

In the literature, there is evidence that intrinsic coordinates
contribute to adaptation in isometric tasks involving a variety
of control spaces and virtual dynamics. de Rugy et al. (2009)
performed a similar center-out targeting task requiring adapta-
tion to a 45° visual cursor rotation, although the arm was
positioned out of plane. The finding that the behavior of muscle
synergies at the wrist did not follow those at the elbow suggests
that visuomotor adaption involved at least some neural pro-
cessing in muscle-based coordinates. Our experiment did not
distinguish between joint-space and muscle-space coordinate
frames, found to be distinct for the shoulder and elbow (Flan-
ders and Soechting 1990; Sergio and Kalaska 1997). [These
coordinate frames are reported to be more similar to each other
for the wrist (de Rugy et al. 2012a).] The agreement of a
learned intrinsic frame is also interesting given the difference
in the task coordinates between the two studies; we trans-
formed extrinsic force commands to Cartesian-space cursor
movement, whereas de Rugy et al. (2009) mapped torques to a
joint-space display. Furthermore, Berger et al. (2013) showed
that the recruitment of modulated, vs. new, muscle synergies
increases the rate of adaptation even when the force-controlled
cursor represents a critically damped mass with an adaptive
mass-spring-damper filter. Together, this evidence suggests
that isometric learning may occur at least partially in intrinsic
coordinates, independent of the particular task and cursor
mapping. The fact that patterns of joint torques generalized
more widely than patterns of force in a 1-degree-of-freedom
isometric object manipulation task (Mah and Mussa-Ivaldi
2003) further emphasizes that intrinsic coordinates may be
important not only in simple force/torque cursor control, but
also in the control of complex virtual dynamic systems.

The most interesting implication of the predominance of
intrinsic transfer is that, despite similarities in the rate and
extent of visuomotor learning in isometric and dynamic tasks,
there may be fundamental differences in learning processes in
the two environments. Our results, alongside evidence of
neural activation and coordinate frame coding, suggest that1 However, there were differences in the analysis between the studies. Here,

� was calculated from a double-exponential curve fit to angular errors nearest
to 3.5 cm from the start of movement, whereas in Rotella et al. (2013), � was
calculated from a two-state learning model fit to errors nearest to 150 ms from
movement onset. With the selected control gains, the distance metric was more
appropriate in capturing early angular errors in both mappings.

2 We note that the transfer of learning in Krakauer et al. (2000) represents
the amount of generalization to a test condition in which the rotation is present.
In our study and in Pine et al. (1996), transfer is quantified by the magnitude
of the aftereffect present when the rotation is removed.
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learning a visuomotor rotation in an isometric environment
may be more closely related to learning arm dynamics than arm
kinematics. In real reaching, adaptation to a visual or force-
field perturbation activates key motor regions including the
primary motor cortex (M1), somatosensory cortex, and cere-
bellum (Diedrichsen et al. 2005; Donchin et al. 2012; Galea et
al. 2011) in addition to error-specific motor areas. In the case
of a visual rotation, learning is driven by visual error that
represents the discrepancy between visual and proprioceptive
representations of the hand (Krakauer et al. 1999). Adaptation
is achieved by sensory recoordination in the premotor cortex
(Krakauer et al. 2004), posterior parietal cortex (PPC;
Diedrichsen et al. 2005; Ghilardi et al. 2000; Krakauer et al.
2004; Tanaka et al. 2009), and frontal-parietal/frontal-central
areas (Contreras-Vidal and Kerick 2004), regions that are
generally coded in extrinsic coordinates centered on the eye or
hand (Buneo et al. 2002; Buneo and Andersen 2006; Kakei et
al. 2001, 2003; Scott et al. 1997). Extrinsic neural coding is
consistent with the extrinsic frame in which a visual rotation is
learned.

In contrast, adaptation to a dynamic perturbation is mostly
driven by intrinsic, proprioceptive errors (Krakauer et al. 1999)
that change the activation rate and spatial tuning of neurons in
M1 (Li et al. 2001), the cerebellum (Xiao et al. 2006), and, to
a lesser degree, the premotor areas (Xiao et al. 2006). Although
M1 has been found to contain both extrinsic and intrinsic
neurons necessary for transforming visual trajectory informa-
tion to intrinsic motor commands (Kakei et al. 2001) and an
intermediate coordinate frame (Yanai et al. 2008), there may be
a correlation between the large percentage of intrinsic M1
neurons (Scott and Kalaska 1997) and the intrinsic frame in
which dynamics are learned. The intrinsic generalization in this
experiment may indicate that M1 also plays an important role
in isometric adaptation; evidence of M1 activation in isometric
force control (Sergio et al. 2005), M1 involvement in early
learning of an isometric visuomotor rotation (Riek et al. 2012),
and M1 sensitivity to changes in static arm pose in force
generation (Sergio and Kalaska 1997, 2003) corroborate this
possibility. Directly testing the hypothesis of shared neural
mechanisms in the learning of arm dynamics and isometric
visual perturbations is beyond the scope of this work and is left
for future investigations.

Although we designed our experiment based on the assump-
tion of a single frame of reference for isometric visuomotor
rotation learning, recent evidence suggests that the internal
representations involved in adapting to visual perturbations
(Baraduc and Wolpert 2002) and force fields (Haswell et al.
2009; Parmar et al. 2011) may occur in a mixed-coordinate
frame. In a compelling reaching study, Brayanov et al. (2012)
investigated the generalization of visuomotor learning across
multiple combinations of movement direction and workspace
and revealed an internal representation that was a multiplica-
tive gain-field combination of extrinsic and intrinsic coordi-
nates. Our results are in line with the gain-field model given
that we sampled only one (vs. multiple) target directions in our
transfer experiment. Mixed-coordinate frames are further sup-
ported by the mixed neural coding found in some motor control
areas, including M1 (Kakei et al. 1999, 2001; Kalaska 2009;
Wu and Hatsopoulos 2006) and PPC (Scott et al. 1997; Snyder
et al. 1998). The presence of a mixed-coordinate gain field may
explain the incomplete transfer that we observed in both PJ and

VJ groups and potentially the small extrinsic transfer in VH. As
suggested by Brayanov et al. (2012), it is possible that an
intermediate target direction, not solely associated with hand or
joint space, may result in maximal or complete transfer. Test-
ing this hypothesis would require a wider exploration of how
isometric rotation learning generalizes across multiple target
directions in a new workspace.

In addition to a mixed-coordinate representation, it is pos-
sible that a forgetting process may have contributed to the
attenuated aftereffects. The average angular error curves for all
groups contained sharp increases in error on postbreak trials.
These are consistent with error peaks in saccade adaptation
(Ethier et al. 2008) and have been attributed to a fast forgetting
process. Assuming that an active forgetting process occurred in
our task, the break preceding the TFR phase may also have
contributed to incomplete learning transfer. A specific explo-
ration of the effect of time between sessions on transfer
aftereffects would be needed to support this idea further.

Comparison of Position and Velocity Mappings

When we analyzed participant performance using both po-
sition and velocity control mappings, we found that the posi-
tion mapping generated faster peak cursor speeds and shorter
trial times, whereas the velocity mapping produced more
overshoot. These properties reflect both the nature of the
mapping and the control gains, which were selected to achieve
peak speeds between 0.4 and 0.6 m/s. In the position mapping,
the significantly shorter trials may have been the result not only
of faster peak speeds, but also the unidirectional, vs. bidirec-
tional, pattern of force input. Kim et al. (1987) explored
position and rate control in a displacement- and force-based
joystick manipulandum and similarly found that position con-
trol was associated with shorter mean completion times. Posi-
tion control required a single movement (or force) input vs. a
more complex and time-intensive pair of opposing movements
(or forces) in rate control.

The required input force further influenced cursor perfor-
mance at the target. In position control, a constant force was
needed to stabilize the cursor, and small corrective movements
were often observed at the target. These corrections may be the
result of signal-dependent noise in the motor system (Faisal et
al. 2008). Specifically, greater variability and physiological
noise has been associated with maintaining a large constant
isometric force control (Jones et al. 2002). We suggest that
noise had less of an effect on endpoint stabilization in the
velocity mapping, requiring the force to be below 0.2 N to stop
the cursor inside the target. Furthermore, the velocity mapping
was associated with greater cursor overshoot to achieve the
target speed range. The large overshoot could be eliminated in
future studies by relaxing the constraint on the maximum
cursor speed for the velocity-mapped trials or by making the
maximum speed criteria more achievable via modification of
the control gain. Mitigating the differences in reach amplitude
between the mappings would help to isolate adaptive changes
in the cursor trajectory from changes in final position, which
are found to have separate adaptive mechanisms (Ghez et al.
2007; Scheidt and Ghez 2007).

Although the extent of adaptation was comparable in all
groups, the subtleties of cursor kinematics across mappings may
have contributed to differences in the initial training error and
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adaptation rate. In the position mapping, the average error in the
first training trial exceeded the anticipated 45° magnitude and was
significantly larger than the corresponding error in the velocity
mapping. This may be related to some general postbreak effect of
a clockwise bias in initial movements that had an additive effect
to the overall error (see Fig. 3 BL and TRN trials). The informa-
tion that was collected in the current study does not provide us
with an explanation about the origin of this bias or why this effect
was exacerbated in the position mapping. Nevertheless, even
though we do not understand the origin of this error overshoot, it
may have contributed to faster learning. Since visual feedback of
the cursor was provided in all trials, participants in the position
groups visually perceived a larger initial error, which may have
contributed to the slightly accelerated fast learning rate that was
observed (Patton et al. 2013).

With respect to learning generalization, the type of mapping
influenced both the within-workspace generalization and the
transfer of learning to the new workspace. Again, we hypothesize
that greater generalization for the velocity mapping may be the
result of increased exposure to the perturbation. The relatively
greater transfer implies that the velocity mapping more closely
resembles actual movement and thus could represent a more
effective isometric control strategy for rehabilitation in which we
seek to maximize the transfer of learning to new environments
and slow the washout process. The next step toward this end is to
investigate a more sophisticated mapping that attributes realistic
arm dynamics to the cursor, including inertial and damping
effects. Berger et al. (2013) implemented such a mapping in
which force at the hand controlled a cursor with mass-spring-
damper dynamics. Their work investigated adaptation to virtual
surgeries that perturbed the muscle-to-force mapping, requiring
the modification of existing synergies (compatible surgery) or the
recruitment of new synergies (incompatible surgery). Although
participants adapted to both virtual surgeries, demonstrating an
ability to learn the complex mapping, the rates of learning dif-
fered. Faster learning was associated with the compatible surgery,
which required a rescaling of practiced muscle patterns (de Rugy
et al. 2012b), whereas slower learning was found for incompatible
surgeries, which required the recruitment of new synergies. Sim-
ilar mass-spring-damper dynamics were implemented by Gentner
et al. (2013) in a study that demonstrated the robustness of muscle
synergies in isometric adaptation to a visuomotor rotation. Further
investigation of cursor dynamics could involve modeling the
cursor as a realistic arm using participant-specific parameters
(Melendez-Calderon et al. 2011) and exploring the use of virtual
avatars to enhance embodiment in isometric tasks.

Implications for Rehabilitation

When people suffer from stroke or other movement disor-
ders, physical therapy may be used to restore lost arm strength
and movement coordination. Although the delivery of frequent
and highly intensive therapy is beneficial, treatment is limited
by the time and physical resources of the therapist. Robots can
improve treatment by allowing intensive therapy, precise ki-
nematic measurements, and the ability to assist or resist move-
ment. However, robotic devices may be large and complex,
require the sensing and actuation of many degrees of freedom,
and introduce additional safety concerns for the patient. Iso-
metric training, in which a cursor or virtual avatar is controlled
by input force, represents a potential rehabilitation solution in

which patients may learn virtual dynamics while interacting
with a simple interface that is safe and cost-effective. An
isometric rehabilitation strategy is further appealing because it
requires only minimal strength and coordination capabilities,
can be responsive to changes in patient ability and perfor-
mance, and may be integrated in home and clinical settings
with modest hardware and software requirements. One possi-
ble outcome of isometric training would be the transfer of
motor learning to actual movement. The finding of the pre-
dominance of intrinsically coded internal representation in our
isometric task suggests that isometric training involving joint-
space coordinates and torque production may be more intuitive
to learn than training involving Cartesian-space tasks. In future
studies of isometric training, various mixed-coordinate map-
pings may be tested to find the optimal training approach.
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